
Christian Kniep, 2023-01-19

HPC Container Conformance
For lack of a better title… ;) 

Christian Kniep 
QNIB Solutions 

Berlin area, Germany 
info@qnib.org



This presentation represents the first stab on the topic.  
With a limit number of contributors so far.  

So feel free to get in touch and provide your input!



Conformance What!?
What are we trying to achieve?

Guidance! 

• Collect ways of building container images for HPC use cases


• Derive best-practices on how to build and annotate a container


• Use best-practices and annotation and take the SystemAdmin perspective


Expectation Management in terms of Portability/Performance 

• Container images might be specific to a system or generic; how to we 
guide folks what to expect?


Application we start with: GROMACS, PyTorch (, WRF?)



Conformance What!?
What are we NOT trying to achieve?

• We are NOT going to boil the ocean in that we try to make everything work!


• Allow for generic images and also optimised images that only run in specific 
environments. Annotations will make the expectations clear


• We are going to focus on OCI image. Most likely build with a Dockerfile.


• Dockerfile might be derived with another artefact: spack.env / HPCCM recipe



First Stab
What are we going to touch on?

1. How do we expect an image to behave?

A. Specifically the ENTRYPOINT / CMD relationship


2. How to use annotations to inform end-users and sysadmins 

A. What the image file-system (user land) provides

B. Inform the Sysadmin in which ways the image can be tweaked to 

fit the execution environment



Biocontainer Community



Biocontainer Paper 
Recommendations for the packaging and containerising of bioinformatics software

1. A package first


2. One tool, one container


3. Tool and container versions should be 
explicit


4. Avoid using ENTRYPOINT


5. Reduce size as much as possible


6. Keep data outside of the container


7. Add functional testing logic

8. Check the license of the software


9. Make your package discoverable


10. Provide reproducible and documented builds


11. Provide helpful usage message

https://f1000research.com/articles/7-742/v2



Expected Image Behaviour



Expected Image Bahavior
Login Container vs. Application Container

Some containers are used (or usable) as Application alias:


The above container uses the ENTRYPOINT to start the application in question. 
All arguments (CMDs) are arguments for the application itself.


Great for application aliases; but for HPC it hinders how the image can be used. 
Do I need to specify the application (say gmx for GROMACS) or do I start with 
the arguments?

$ alias goreleaser=“docker run -ti goreleaser/goreleaser”

$ goreleaser

GoReleaser is a release automation tool for Go projects.

Its goal is to simplify the build, release and publish steps while providing variant 
customization options for all steps. 



Expected Image Bahavior
Login Container vs. Application Container

For HPC containers we expect to be dropped into a shell (most likely bash)


The look and feel should be similar to logging into a compute node. The 
environment is prepared to have the application already at your fingertips.


docker run -ti -v $(pwd):/data quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64 
bash-4.2#

$ docker run -ti -v $(pwd):/data -w /data \ 
     quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64 gmx  mdrun -s benchRIB.tpr -resethway 
                   :-) GROMACS - gmx mdrun, 2021.5-spack (-: 
Using 1 MPI thread 
Using 8 OpenMP threads 
starting mdrun 'Protein' 
10000 steps,     40.0 ps.

http://quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64


Expected Image Behavior
Login Container Image - ENTRYPOINT

The ENTRYPOINT should be as small as possible and setup the environment to 
tun the application.


• Source a bash profile to make the application and libraries available


• Apart from that as little runtime decisions as possible (if possible) 
(E.g. the upstream gromacs image has a gmx-choser to pick the best gmx 
binary - IMHO discouraged, even though it makes it portable)



Expected Image Behavior
Login Container Image - CMD

The CMD (default arguments provided to the container) might include an 
example run command (e.g. gmx) or print the usage message.
docker run -ti -v $(pwd):/data quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64 gmx 
gmx [-[no]h] [-[no]quiet] [-[no]version] [-[no]copyright] [-nice <int>]


Other options: 
 -[no]h                     (no) 
           Print help and quit 
 -[no]quiet                 (no) 
           Do not print common startup info or quotes 
 -[no]version               (no) 
           Print extended version information and quit

http://quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64


Annotations



Annotations/Labels?



What are annotations and labels?
Labels vs. Annotations



What are annotations and labels?
Labels vs. Annotations



• Labels are part of the image config and thus tied to a manifest


• Annotations are part of the OCI spec and can be attached to 


• Manifests (application/vnd.oci.image.manifest.v1+json)


• Image Index (application/vnd.oci.image.index.v1+json)

What are annotations and labels?



Annotations Base Ideas



Container Annotations
What for?

Annotations will serves two purposes

1. Describe the image: SysAdmins and end users know what to expect


A. What user-land is provided by the image itself?

B. In which ways can the image be tweaked to make the most out of 

the execution environment (CPU µArch, GPU, MPI)?

C. Configure hooks, runtimes to tweak the container correctly

D. Provide a smoke test to fail fast: “Container will SEGFAULT!”


2. Inform end users what to look out for an execution environment

A. Look out for mpich variants with ABI version xyz…



Mandatory Annotations / Optional once

The following slides just list groups of annotations, but at the end we need to 
define:


A. Mandatory annotations (which CPU architecture the container is compiled) 
-> Without those the container is not considered ‘HPC Container Compliant’


B. Optional annotations (CUDA version, complete SBOM) 
-> depending on how far you want to go

Container Annotations



Annotation Groups



Hardware Annotations
CPU/GPU/…

org.supercontainers.hardware.cpu.optimized.mode architecture, genericMicro, microarchitecture
org.supercontainers.hardware.cpu.optimized.version x86_64 / x86_64_v4 / skylake / skylake_avx512

org.supercontainers.hardware.gpu.nvidia.driver.version 346.34

org.supercontainers.hardware.gpu.nvidia.cuda.version 12.1

org.supercontainers.hardware.gpu.nvidia.architecture sm_35 (kepler), sm_86 (ampere)

Information about what the application in the containers user-land is 
compiled for. 
- Will the application segfault due to architecture mismatch (beyond the platform specification ARM/x86)? 
- What CUDA version and GPU architecture is the application build against?



MPI/Interconnect Annotations

org.supercontainers.mpi.implementation (openmpi,mpich,threadmpi)
org.supercontainers.communication.framework (ucx, libfabrics)
org.supercontainers.openmpi.version 1.16.1
org.supercontainers.libfabric.abi.version 1.6
org.supercontainers.mpi.portability.optimization stock, cray-xc-cnl10
org.supercontainers.mpi.portability.mode mpi_replace, libfabric_inject, ucx_replace

Information about what the user-land is compiled for and what 
methods to tweak the container is the container designed for?



System Annotations
What can the user expect 

org.supercontainers.libc.implementation glibc,musl
org.supercontainers.glibc.version 2.35
org.supercontainers.python.version 3.10
org.supercontainers.shell.implementation bash,sh,zsh
org.supercontainers.tools.includes jq,wget,awscli
org.supercontainers.path.extra /usr/local/bin (empty dir already in PATH)
org.supercontainers.kernel.version 5.1

Scripting Environment: What does the container carry to support scripts?

What is expected from the host system
org.supercontainers.host.kernel.version.min 5.1
org.supercontainers.host.kernel.modules.expectation user-namespaces



Documentation Annotations
Further information

org.supercontainers.docs.quickstart.link https://external.website.org/how-to-gromacs
org.supercontainers.docs.quickstart.base64 base64-encoded-markdown
org.supercontainers.docs.benchmark.link https://external.website.org/how-to-bench-gromacs
org.supercontainers.docs.benchmark.base64 base64-encoded-markdown

How to use the container?

How to reproduce/tweak the container build
org.supercontainers.docs.build.dockerfile base64-encoded-dockerfile

org.supercontainers.docs.build.spack.env base64-encoded-spack.env

org.supercontainers.docs.build.quickstart.link https://external.website.org/how-to-build-gromacs
org.supercontainers.docs.build.quickstart.base64
 base64-encoded-markdown

Hello-world example as minimalistic as possible

Benchmark how-to with meaningful, representative result

https://google.de
https://google.de


How to annotate?



Layered Approach
Annotations might be added in multiple stages

• The base image might provide some basic annotations about the 


• Operating system, tools already installed, libraries, etc.


• While building a subsequent image new annotations can be made:


• Application version, additional dependencies


• After an image is build we might annotate more information


• Using tools like crane


• Collect annotation of image URIs (gromacs/gromacs:2021.5) without 
changing/republishing the image



Build Tools
Ideally tools like Spack/Easybuild/HPCCM have this build in

• HPCCM already provides a way to annotate the resulting image: 
Stage0 += openmpi(version='3.1.4', annotate=True)


• Spack might add annotations in the resulting image (make it Todds’ problem)


• EasyBuild and other might do the same


Benefit 

• By offloading (basic) annotations to build tools would make it easy to get 
annotations in, w/o the user even thinking about it.



External Curation of Annotations
Without access/control over images, we might just collect them

A curated list of HPC images can annotate without changing the image.  
E.g. using MetaHub Collections:




System Fingerprint



System Fingerprint
archspec++

To match the annotations within the manifest and image index, we need to 
create a fingerprint of the system. Some ideas:


1. Hardware:  CPU (archspec), GPU, Interconnect


2. OS: Kernel ABI


3. Software: glibc, maybe something like PMIx version?


4. Runtimes: What runtimes are installed, how are they configured?



ReCap



Container Behaviour
Use a simple ENTRYPOINT to prepare the use of an application

1. A container ideally has binary(/binaries) and set of libraries compiled to support 
the execution of a given application. No runtime selection between different 
targets.


2. A container should drop into a shell (similar to when someone logs into a node)


3. The entry point should make as little runtime tweaks as possible


This will ensure that we can swap different images and still maintain the same 
behaviour (use the same submit script).



Annotations
Describing the image itself and how it expects to interact

A set of HPC specific image annotations are going to be the goal to describe:


1. The content of the user land of the container and what it is compiled for


2. How the container expects to be tweaked to utilise execution environment 
specifics: CPU micro-architecture, MPI implementations, GPUs


This will help end users and sys admins to discover images already optimised and 
how to configure execution environments to run different sets of images.



What’s Next?



Some Ideas First



Tooling to Assist
Helper tools to match system information with container annotations

Imaging a tool that takes information about the execution environment and the 
container annotations. It may provide a score:


1. Architecture smoke-test (before downloading every layer): 
Will this image even run or segfault along the way?


2. Expected performance ballpark: 
Given it matches the MPI ABI and the binary is compiled for the CPU… 
green:   performance is near-baremetal (90+%) 
orange: performance is not optimal, but decent: (50+%) 
red:       it won’t run at all or with poor performance: (10% and below)



Automatic Benchmark
Run benchmarks suites informed by annotations

• Once we know how to run images given their annotations we might run 
benchmarks suites automagically…



Next Steps
Until next Advisory Meeting (2023/2/2)



Next Step #1: Collect Images
Add Images with Annotations to MetaHub Community Edition

• Collect/Build ‘well behaving’ images 


• Add them to MetaHub CE over at Gitlab1

1: https://gitlab.com/qnib-metahub/community-edition

https://gitlab.com/qnib-metahub/community-edition


Next Step #2: Run Images at Sites
What are the challenges? What configuration can we converge towards?

Runtime/Engine 

Fetch MPICH and Open MPI images of GROMACS and run it


1. Do we need to change the submit script based on the annotations OR


2. Can we use the same and have the runtime/engine adjust?

1: https://gitlab.com/qnib-metahub/community-edition

https://gitlab.com/qnib-metahub/community-edition


Next Step #3: Create Tooling
Fingerprint, matcher

System Fingerprint 

A CLI (library and language bindings) to capture the fingerprint. 
Can we translate a container fingerprint into annotations?


HPC Matcher 

CLI which takes in a fingerprint and a set of annotations and outputs a score.

1: https://gitlab.com/qnib-metahub/community-edition

https://gitlab.com/qnib-metahub/community-edition


Thanks!
If you have questions or need consulting, 

 please reach out.

Christian Kniep 
QNIB Solutions 

Berlin area, Germany 
info@qnib.org


